Evaluation of three lattice Boltzmann models for multiphase flows in porous media

نویسندگان

  • Haibo Huang
  • Lei Wang
  • Xi-Yun Lu
چکیده

A free energy (FE) model, the Shan–Chen (S–C) model, and the Rothman and Keller (R–K) model are studied numerically to evaluate their performance inmodeling two-dimensional (2D) immiscible two-phase flow in porous media on the pore scale. The FEmodel is proved to satisfy the Galilean invariance through a numerical test and the mass conservation of each component in the simulations is exact. Two-phase layered flow in a channel with different viscosity ratios was simulated. Comparing with analytical solutions, we see that the FEmodel and the R–Kmodel can give very accurate results for flowswith large viscosity ratios. In terms of accuracy and stability, the FE model and the R–K model are much better than the S–C model. Co-current and countercurrent two-phase flows in complex homogeneousmedia were simulated and the relative permeabilities were obtained. Again, it is found that the FEmodel is as good as the R–Kmodel in terms of accuracy and efficiency. The FEmodel is shown to be a good tool for the study of two-phase flowswith high viscosity ratios in porous media. © 2010 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of pore-scale random porous media using lattice boltzmann method

The permeability and tortuosity of pore-scale two and three-dimensional random porous media were calculated using the Lattice Boltzmann method (LBM). Effects of geometrical parameters of medium on permeability and tortuosity were investigated as well. Two major models of random porous media were reconstructed by computerized tomography method: Randomly distributed rectangular obstacles in a uni...

متن کامل

Gas-liquid Relative Permeability Estimation in 2D Porous Media by Lattice Boltzmann Method: Low Viscosity Ratio 2D LBM Relative Permeability

This work is a primary achievement in studying the CO2 and N2–oil systems. To predict gas-liquid relative permeability curves, a Shan-Chen type multicomponent multiphase lattice Boltzmann model for two-phase flow through 2D porous media is developed. Periodic and bounce back boundary conditions are applied to the model with the Guo scheme for the external body force (i.e.,...

متن کامل

Implementation of D3Q19 Lattice Boltzmann Method with a Curved Wall Boundary Condition for Simulation of Practical Flow Problems

In this paper, implementation of an extended form of a no-slip wall boundary condition is presented for the three-dimensional (3-D) lattice Boltzmann method (LBM) for solving the incompressible fluid flows with complex geometries. The boundary condition is based on the off-lattice scheme with a polynomial interpolation which is used to reconstruct the curved or irregular wall boundary on the ne...

متن کامل

Pore-scale Simulation of High-density-ratio Multiphase Flows in Porous Media Using Lattice Boltzmann Method

A lattice Boltzmann high-density-ratio model, which uses diffuse interface theory to describe the interfacial dynamics and was proposed originally by Lee and Liu [T. Lee, L. Liu, Lattice Boltzmann simulations of micron-scale drop impact on dry surfaces, J. Comput. Phys. 229(2010) 8045-8063], is extended to simulate multiphase flows in porous media. A wetting boundary treatment is proposed for t...

متن کامل

Using Lattice Boltzmann Method to Investigate the Effects of Porous Media on Heat Transfer from Solid Block inside a Channel

A numerical investigation of forced convection in a channel with hot solid block inside a square porous block mounted on a bottom wall was carried out. The lattice Boltzmann method was applied for numerical simulations. The fluid flow in the porous media was simulated by Brinkman-Forchheimer model. The effects of parameters such as porosity and thermal conductivity ratio over flow pattern and t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computers & Mathematics with Applications

دوره 61  شماره 

صفحات  -

تاریخ انتشار 2011